
#### Kjernekraft i Norge?

Dieter Roehrich UiB

Shall Norway invest in nuclear energy and build nuclear reactors?

History First reactors

- graphite moderated, natural uranium fuel
- 1. E. Fermi, Chicago Pile, USA, Dec. 1942



2. I. Kurchatov, Russia, Dec. 1946

#### Controlled chain reaction of neutron induced fission processes of uranium or plutonium nuclei

- Fuel cycle
  - $^{235}U$  is the only natural fissile material, natural uranium contains 99.3%  $^{238}U$  and 0.7%  $^{235}U$
  - the other isotopes (<sup>233</sup>U from <sup>232</sup>Th), (<sup>239</sup>Pu from <sup>238</sup>U) have to be produced in reactors ("breeding").

#### Reactor technology

- Reactor design: **thermal reactors** (slow neutrons) or **fast reactors** (fast neutrons)
- Coolant

The energy released in the fission process is converted into heat which has to be transferred away from the reactor core by a coolant. Typical coolants for thermal reactors are water or helium gas; fast reactors used liquid metals (sodium or lead)

Moderator (only thermal reactors)
 In case of a thermal reactor, the fast neutrons have to be slowed down by a moderator.
 Moderator and coolant can be identical, but don't have to be. Typical moderators are water (normal or light water), heavy water (made with deuterium) and graphite.

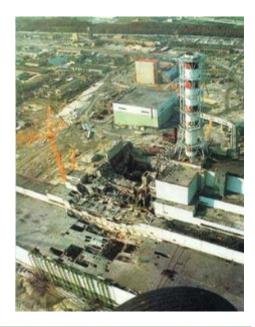
Nuclear energy is a complex technology with many risks

Four key problems:

- **1.** Operational accidents
- 2. Shortage of <sup>235</sup>U fuel / Breeding of <sup>233</sup>U from <sup>232</sup>Th and <sup>239</sup>Pu from <sup>238</sup>U?
- 3. Waste management
- 4. **Proliferation nuclear weapons**

#### 1. Operational accidents

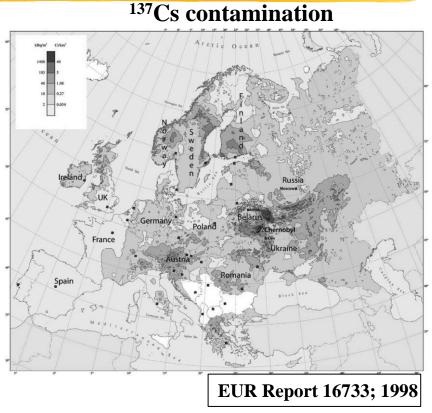
- Criticality accident (Chernobyl)
  loss of control of reactivity → prompt criticality
- Loss of coolant (Fukushima)
  Energy release after shutdown (normal operation: 2700 MW<sub>th</sub>)


After 1 minute: 150 MW

After 1 hour: 45 MW

After 1 day: 15 MW

Weeks/months: ≈15 MW

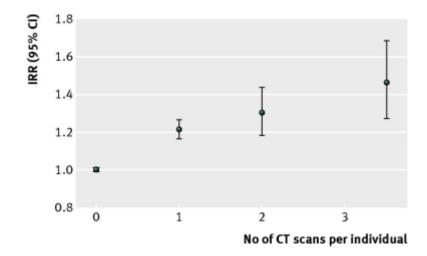

→ The heat must be removed from the reactor core after shutdown of the chain reaction.
 Without cooling, the fuel rods overheat, react with water/steam creating hydrogen and finally melt.





**Criticality accident (Chernobyl) - consequences** 

- Release of 1-2% of the radioactive inventory into the atmosphere
- Radioactive contamination of central, eastern and northern Europe
- Collective dose in the northern hemisphere:
  ≈ 600.000 person-Sv
  IAEA-SM-339/185; 1995
- Estimates of excess fatal cancer cases based on the Linear Non-Threshold (LNT) model:
  - 1. Risk factor per Sv:  $1.5\% \rightarrow 17.850$  cases
  - 2. Risk factor per Sv: 5-10%  $\rightarrow$  30.000-60.000 cases




Int. J. Cancer: 119, 1224-1234; 2006

Medicine, Conflict and Survival, 23:1; 2007

#### **Establishing a dose-response relationship**

- Linear non-threshold dose-response curve: epidemiologic evidence
  - Radiation exposure from CT scans in childhood
    - Incidence rate ratios (IRR) for all types of cancers in exposed versus unexposed individuals vs the number of CT scans (≈5.7 mSv per scan)



BMJ 2013;346:f2360 doi: 10.1136/bmj.f2360

2. Shortage of <sup>235</sup>U fuel - reported uranium reserves last until about 2040 Solution to the fuel crisis: breeding of <sup>233</sup>U from <sup>232</sup>Th and <sup>239</sup>Pu from <sup>238</sup>U

- Thermal Thorium breeder: conversion factor of only 80%, i.e. no breeding
- Fast Plutonium breeder: breeding factors higher than one have been achieved

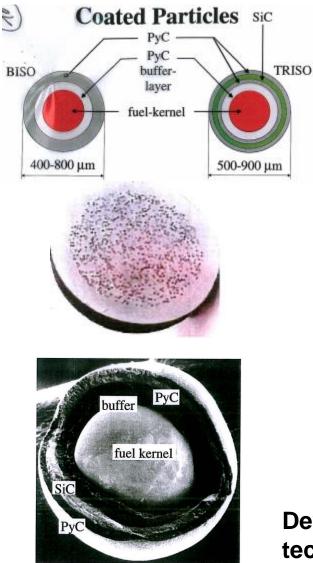
**Compact reactor core – just fissile and fertile fuel rods** 

 $\rightarrow$  high neutron flux  $\rightarrow$  material damage

- $\rightarrow$  highly enriched fuel (<sup>239</sup>Pu, <sup>233</sup>U)
  - $\rightarrow$  narrow range of allowed reacticity  $\rightarrow$  criticality accidents

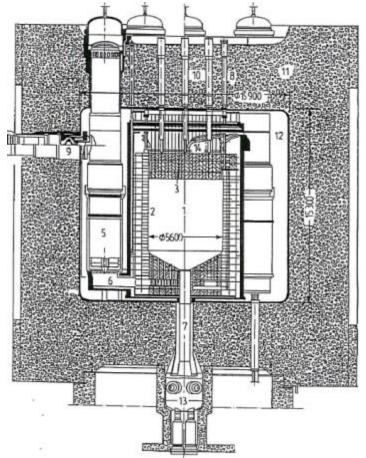
 $\rightarrow$  proliferation

 $\rightarrow$  High energy density – liquid metal coolant (sodium, lead)


 $\rightarrow$  unproven technology (on large scale)  $\rightarrow$  accidents

 $\rightarrow$  Requires reprocessing of spent fuel - closed fuel cycle

 $\rightarrow$  hot chemistry  $\rightarrow$  (criticality) accidents


 $\rightarrow$  proliferation

# **Thorium high temperature reactor**



#### Gas-cooled (He) graphite-moderated reactor

- Fuel:
  675,000 spherical fuel elements
- Fuel element: 30,000 coated particles
- Fuel elements are continuously loaded during operation
- They are recycled several times (about 6) to gain the final burn-up



Development costs for the fuel cycle and the reactor technology today:  $\sim 50 - 100$  billion NOK

#### **Reactor operation diagram: safety margins**

#### 235**T** J stable reactor stable reactor 233TT stable reactor <sup>239</sup>Pu period period T [sec] T [sec] period T [sec] with delayed neutrons with delayed neutrons with delayed neutrons prompt neutrons only prompt neutrons only prompt neutrons only $10^{3}$ $10^{3}$ $10^{3}$ prompt prompt prompt critical critical critical $10^{2}$ $10^{2}$ $10^{2}$ region region region 10 10 10 $= 10^{-10}$ $\tau = 10^{\circ}$ $\tau = 10^{-3}$ $\tau = 10^{-4}$ $\tau = 10^{-1}$ $\tau = 10$ $10^{-}$ $10^{-1}$ 10 $10^{-}$ $10^{-2}$ 10- $10^{-}$ $10^{-3}$ 10-10-4 10-3 10-3 10 10 10 10 reactivity reactivity reactivity

#### **Thermal reactors**

#### **Fast reactor**

3. Waste management

Fuel inventory of a typical power reactor (LWR, 1  $GW_{el}$ ): 100 tons Spent fuel discharge per year: 30 tons containing about 2% unused <sup>235</sup>U, plutonium isotopes of breeding process from <sup>238</sup>U and fission products: 600 kg <sup>235</sup>U

285 kg Pu (70% <sup>239</sup>Pu) 450 kg fission products

- **Fuel cycles**
- Open fuel cycle (once-through)

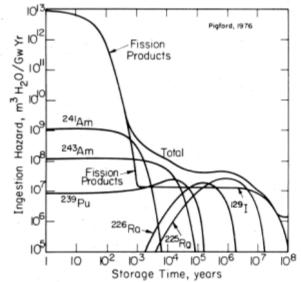
uranium ore -> enrichment -> reactor -> waste storage (current reactor technology relies on enriched <sup>235</sup>U fuel)

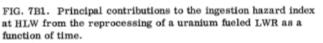
- Closed fuel cycle

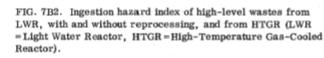
<sup>238</sup>U - <sup>239</sup>Pu or <sup>232</sup>Th - <sup>233</sup>U cycles, require reprocessing of spent fuel

**Reprocessing of spent fuel - <sup>239</sup>Pu/<sup>233</sup>U extraction** 

Medium/large-scale chemical plant


- PUREX: various "hot" chemical processes
  - chopping up spent fuel
  - dissolving the fuel in acid
  - solvent-extracting and ion-exchanging processes
  - converting plutonium to metallic form
- THOREX: similar process for the extraction of <sup>233</sup>U


→ accident prone, high maintenance hot chemistry plant (e.g. Sellafield)




#### **Storage of nuclear waste**

- Waste from LWR (U fuel), with and without reprocessing, and from Thorium reactors (U-Th) Pigford, 1976
  - some differences in toxicity after 200 years
  - waste has to be kept away from biosphere and/or safeguarded for about 10<sup>7</sup> years







U Fueled LWR;

0.5 % U and Pu in Wastes

Storage Time, years

Dischärge U Fuel

LWR With Self-generated Pu Recycle, 0.5 % U and

106 107

HTGR

108

Pu in Wastes

from LWR

510

10

10

U-Th

Fueled HTGR

m<sup>3</sup> H<sub>2</sub>0/Gw)

Ingestion Hazard,

in

10

- Storage in a geologic repository
  - no consensus on what is a safe geologic formation

4. Proliferation

Any civilian nuclear installation (enrichment plant, reactor, reprocessing plant) can give access to weapons-grade nuclear material

- Enrichment plant no difference in operation for 3% or >80% (weapons-grade) enrichment of <sup>235</sup>U
- Reactor operation short burn-up of fuel gives high yields of weapons-grade isotopes (<sup>239</sup>Pu and <sup>233</sup>U)
- Reprocessing plant PUREX and THOREX process - extraction of almost pure <sup>239</sup>Pu and <sup>233</sup>U





Nuclear energy is a complex technology with many risks

- **1.** Some experience with thermal reactors and <sup>235</sup>U fuel
- 2. Very limited experience with breeding of <sup>233</sup>U from <sup>232</sup>Th and operating reactors with <sup>233</sup>U

one large-scale prototype in Germany (1960-86)  $\rightarrow$  conversion factor of only 80%, i.e. no breeding

- 3. Some, mostly negative, experience with fast reactors for breeding of <sup>239</sup>Pu from <sup>238</sup>U
- 4. Closed fuel cycle, i.e. chemical reprocessing of spent fuel, is messy
- 5. Waste storage not solved
- 6. Norway no longer has expertise in nuclear energy and there is no nuclear industry
- → Instead of spending money on nuclear energy, Norway should invest in lossless energy transmission and energy storage technologies

#### The End